
Tutorial session
Abstract

The goal of this tutorial session is to give you a first "hands-on experience" withthe BINSEC platform [2]. We are going to exercise with the symbolic executionengine to solve a small reverse-engineering challenge, then, get an idea on howto extend the BINSEC capabilities.
Keywords: GTMFS 2025, reverse engineering, tests, symbolic execution

Cyber in Berry 2.0: Ecole d’été en cybersécurité

15-19 Juillet 2024 Bourges (France)

Frédéric Recoules



SETUP

There are several ways to install BINSEC depending on your operating system andyour preferences.If you are familiar with the OCaml language, you can install BINSEC directly with
opam.

$ opam install --yes curses bitwuzla-cxx unisim_archisec binsec

In other cases, we recommend using docker with the provided Dockerfile.
$ docker build -t binsec/gtmfs:2025 .

You will then need to copy the other file in the docker container.
$ docker run --name binsec-gtmfs2025 -it binsec/gtmfs:2025

On another terminal, you can then do the following.
$ docker cp dune-project binsec-gtmfs2025:/home/binsec/
$ docker cp dune binsec-gtmfs2025:/home/binsec/
$ docker cp test.ml binsec-gtmfs2025:/home/binsec/
$ docker cp riddle binsec-gtmfs2025:/home/binsec/
$ docker cp riddle_arm64 binsec-gtmfs2025:/home/binsec/

You can leave or enter the docker at any time.
• from the container

$ exit

• to restart the container
$ docker start binsec-gtmfs2025

• to go into the container
$ docker attach binsec-gtmfs2025

The source code files dune-project, dune and test.ml define a BINSEC plugin.To install it, run the following.
$ dune build @install && dune install

We should now be ready to start this lab.

1



We will exercise the Symbolic Execution concept over the small CTF puzzle named
riddle.
(Basic) reverse-engineering What are we looking for? TheCapture The Flag gamescan take the form of a reverse-engineering challenges to find an input (password, etc.)that will reach a special state of the program, such as leading to an exploit, a crash orsimply printing a victory message. The puzzle riddle is one of them.At first, the command file can give some useful information:
$ file riddle
riddle: ELF 64-bit LSB pie executable, x86-64, version 1 (SYSV), dynamically linked,
interpreter /lib64/ld-linux-x86-64.so.2,
BuildID[sha1]=898ec83a699452ca99f534bb6b3d64950e930546, for GNU/Linux 3.2.0,
not stripped

This puzzle consists of a single ELF x86-64bit executable that contains dynamicfunction calls.At this point, we can simply run the executable to see what is happening – a goodpractice would be to run it in a virtual environment, but here, we swear it does notcontain any malicious code.
Note. If you are working on an ARM processor, you can use the riddle_arm64 to

run the program.

$ ./riddle
Who is your host?

If we fail providing the expected answer, the program terminates with a Nope!.Using the command strings shows the human-readable strings of the program.
$ strings riddle
[..]
Who is your host?
Nope!
Not so far!
Come on!
Congratulation!
[..]

It looks like we want the program to print the Congratulation! message.We could of course try to reverse engineer all the code by hand, but the chal-lenge has been obfuscated with Tigress [3] (we provided the obfuscated source code
challenge_obf.c for reference) and the task is going to be a tough job.
We will use the BINSEC platform instead.

2



1. GETTING STARTED WITH SYMBOLIC EXECUTION

The easiest way to launch the BINSEC symbolic execution is to write a script file. Letus create our first script – arbitrarily called crackme.ini, together.
load sections .text, .rodata, .data from file
starting from <main>
with concrete stack pointer

replace <fgets@plt> (buf, size, _) by
for i<64> in 0 to size - 1 do

@[buf + i] := stdin[i]
end
return size

end

replace <puts@plt> (_) by
return

end

reach <puts@plt> (str) such that @[str, 15] = "Congratulation!"
then print c string stdin

halt at <exit@plt>

The script is a sequence of commands that define both the initial state of the analysisand its goals.
Initial state. Here, BINSEC will initialize the content of the initial memory with thedata from the sections .text (the executable instructions), .rodata (the constants,especially the program strings) and .data (the global variables). BINSEC will thenchoose an arbitrary value for the initial stack pointer and run the execution from theentry of the main function.
Writing a functionmock. Software interacts with the environment and often dependson several libraries.By default, BINSEC does not model the environment of the program. Thus, weneed to provide the semantics of the functions fgets and puts. We can do so usingthe BINSEC intermediate language, called DBA (Dynamic Bitvector Automata).Here, we keep it simple: we skip the puts function while the fgets function copiesbytes from the symbolic array stdin to the input buffer.
Note. The @plt refers to the Procedure Linkage Table. This table contains the

address of the external functions that the program calls.

Target goal. Here, we instruct BINSEC to try to reach the function puts such that thestring that is going to be printed starts with Congratulation!. On success, BINSECwill print the content of the symbolic array stdin as an ASCII string. We also mark the
exit function as the end of the execution path.

3



Now, let us run BINSEC with the following.
1 $ binsec -sse -sse-script crackme.ini -sse-depth 100000 riddle
2 [sse:info] Load section .data (0x0000000000004000, 0x1198)
3 [sse:info] Load section .rodata (0x0000000000002000, 0x652)
4 [sse:info] Load section .text (0x00000000000010a0, 0x769)
5 [sse:result] Path 21 reached address 0x00001070 (<puts@plt>) (0 to go)
6 [sse:result] C string stdin : "Village Club Mil&ade\n"
7 [sse:info] SMT queries
8 Preprocessing simplifications
9 total 10503

10 true 513
11 false 5423
12 constant enum 4567
13

14 Satisfiability queries
15 total 22
16 sat 21
17 unsat 1
18 unknown 0
19 time 0.08
20 average 0.00
21

22 Exploration
23 total paths 21
24 completed/cut paths 0
25 pending paths 21
26 stale paths 0
27 failed assertions 0
28 branching points 10523
29 max path depth 65457
30 visited instructions (unrolled) 65457
31 visited instructions (static) 408

It seems that BINSEC found the solution. The lines 5 and 6 contains the result ofour request. BINSEC also outputs some statistics about the exploration (number of
instruction executed, number of paths, etc.) and the formula discharged to the SMT
solver.Let us verify that the solution is correct.
$ ./riddle
Who is your host?
Village Club Mil&ade
Congratulation!

Not that bad! But, can we use BINSEC for another goal than just finding the solu-tion? Of course! In the next section, we will see how to use BINSEC to generate testcases for this challenge.

4



Starting from a core dump. Still, before moving on to the next topic, there exists away to simplify the definition of initial state for the BINSEC configuration. The idea isas follows. Instead of an empty, fully symbolic state, we can instruct BINSEC to startfrom a fully concrete initial state from a real run. To do this, we can use gdb to dumpthe state of the program at the main entry.
For now, this approach is only supported for x86 code.To do so, we can use the script make_coredump.sh (installed with BINSEC).

$ make_coredump.sh snapshot riddle

Then, we can update the script as follows.
starting from core

replace <fgets> (buf, size, _) by
for i<64> in 0 to size - 1 do

@[buf + i] := stdin[i]
end
return size

end

replace <puts> (_) by
return

end

reach <puts> (str) such that @[str, 15] = "Congratulation!"
then print c string stdin

halt at <exit>

In short, we can replace all initializations by starting from core. We can also removethe @plt attribute because the dump contains the actual body of the external functions(resolved by the dynamic linker).
1 $ binsec -sse -sse-script crackme.ini -sse-depth 100000 snapshot

2. GENERATE TEST CASES

The symbolic execution can be used to resolve reachability queries. It is interestingwhen you know what you are looking for (e.g. outputting Congratulation!).Yet, it is not always the case and we may require a comprehensive exploration.To this end, we can use the explore all command. For instance, we can updatethe script as follows.

5



load sections .text, .rodata, .data from file
starting from <main>
with concrete stack pointer

replace <fgets@plt> (buf, size, _) by
for i<64> in 0 to size - 1 do

@[buf + i] := stdin[i]
end
return size

end

replace <puts@plt> (_) by
return

end

hook <exit@plt> (_) with
print c string stdin
halt

end

explore all

When running BINSEC, it now returns a collection of inputs that exercise the differ-ent behavior of the program.
$ binsec -sse -sse-script crackme2.ini -sse-depth 100000 riddle
[sse:info] Load section .data (0x0000000000004000, 0x1198)
[sse:info] Load section .rodata (0x0000000000002000, 0x652)
[sse:info] Load section .text (0x00000000000010a0, 0x769)
[sse:result] C string stdin : "Village Club Mil&ade"
[sse:result] C string stdin : "Village Club Mil&ad"
[sse:result] C string stdin : "Village Club Mil&a"
[sse:result] C string stdin : "Village Club Mil&"
[sse:result] C string stdin : "Village Club Mil"
[sse:result] C string stdin : "Village Club Mi"
[sse:result] C string stdin : "Village Club M"
[sse:result] C string stdin : "Village Club "
[sse:result] C string stdin : "Village Club"
[sse:result] C string stdin : "Village Clu"
[sse:result] C string stdin : "Village Cl"
[sse:result] C string stdin : "Village C"
[sse:result] C string stdin : "Village "
[sse:result] C string stdin : "Village"
[sse:result] C string stdin : "Villag"
[sse:result] C string stdin : "Villa"
[sse:result] C string stdin : "Vill"
[sse:result] C string stdin : "Vil"
[sse:result] C string stdin : "Vi"

6



[sse:result] C string stdin : "V"
[sse:result] C string stdin : ""
[sse:info] Empty path worklist: halting ...
[sse:info] SMT queries

Preprocessing simplifications
total 41783
true 513
false 21062
constant enum 20208

Satisfiability queries
total 21
sat 20
unsat 1
unknown 0
time 0.07
average 0.00

Exploration
total paths 21
completed/cut paths 21
pending paths 0
stale paths 0
failed assertions 0
branching points 41804
max path depth 65459
visited instructions (unrolled) 273459
visited instructions (static) 410

Yet, the definition of a behavior may not be the one we want. Here, the BINSECdefinition is the fact that the program takes different branches during the execution.Yet, from a test point of view, we may want to define the test cases as the differentoutputs on the terminal.This is where the plugin capabilities of BINSEC come into play. The symbolic ex-ecution engine of BINSEC can be extended to add some instrumentations along theexecution trace and record some data. A plugin can also add new features and extendthe script language.As an example for this lab, we provide a small plugin that generate test cases forthe cram framework on top of the exploration of BINSEC.

7



load sections .text, .rodata, .data from file
starting from <main>
with concrete stack pointer

replace <fgets@plt> (buf, size, _) by
gets(buf, size)
return size

end

replace <puts@plt> (str) by
puts(str)
return

end

replace <exit@plt> (_) by
exit()

end

explore all

The plugin defines new builtins (wisely named gets, puts and exit) that we can useto mock the external functions.We can run it with the following command.
$ binsec -sse -sse-script crackme.ini -sse-depth 100000 riddle \

-cram-test -cram-test-output run.t

The file run.t now contains the different outputs of the riddle program.
TO GO FURTHER

The BINSEC website (https://binsec.github.io/) is the place to look at to gatherinformation about the academic activities of the team and the latest development of theplatform (including other tutorials and reference documents).You can also explore other reverse-engineering challenges from the different edi-tions of the France CyberSecurity Challenge [1]. You can find a good introduction tuto-rial to the reverse-engineering here [5]. The community of Root Me [4] also proposesa large selection of challenges of increasing difficulties.
REFERENCES

[1] ANSSI. Hackropole. https://hackropole.fr/fr/, 2024.
[2] CEA. BINSEC. https://binsec.github.io/, 2024.
[3] Christian Collberg. Tigress. https://tigress.wtf/introduction.html, 2024.
[4] Root Me. Root Me. https://www.root-me.org/, 2024.
[5] Reverse ZIP. Introduction au reverse. https://reverse.zip/categories/

introduction-au-reverse/, 2024.
8

https://binsec.github.io/
https://hackropole.fr/fr/
https://hackropole.fr/fr/
https://reverse.zip/categories/introduction-au-reverse/
https://www.root-me.org/
https://hackropole.fr/fr/
https://binsec.github.io/
https://tigress.wtf/introduction.html
https://www.root-me.org/
https://reverse.zip/categories/introduction-au-reverse/
https://reverse.zip/categories/introduction-au-reverse/

	Getting started with symbolic execution
	Generate test cases

